首页> 外文OA文献 >Integrating Non-Collocated Well and Geophysical Data to Capture Lithological Heterogeneity at a Managed Aquifer Recharge and Recovery Site
【2h】

Integrating Non-Collocated Well and Geophysical Data to Capture Lithological Heterogeneity at a Managed Aquifer Recharge and Recovery Site

机译:整合非定位井和地球物理数据,以在管理的含水层补给和回收地点捕获岩性非均质性

摘要

Aquifer recharge and recovery (ARR) is the process of enhancing natural groundwater resources and recovering water for later use by constructing engineered conveyances. Insufficient understanding of lithological heterogeneity at ARR sites often hinders attempts to predict where and how quickly infiltrating water will flow in the subsurface, which can adversely affect the quality and quantity of available water in the ARR site. In this study, we explored the use of electrical resistivity tomography (ERT) to assist in characterizing lithological heterogeneity at an ARR site, so as to incorporate it into a flow and contaminant transport model. In this case, we had non-collocated well core log data and ERT data from a full-scale ARR basin. We compared three independent methods for producing conditional lithology-resistivity probability distributions: 1) a search template to relate the nearest logged well lithologies with ERT resistivity panels, given search criteria; 2) a maximum likelihood estimation (MLE) to match bimodal normal distributions to the histogram of each ERT line; and 3) variogram-based lithology indicator simulations constrained to well data. Each approach leverages Bayes’ Rule to estimate lithology probability given electrical resistivity. The simplest approach (method 1) yields an erroneous conditional probability function where sand dominates the conditional probability at nearly all resistivities, due in part to the strong presence of sand in the wells nearest the ERT lines. The approaches using MLE and lithology simulations (methods 2 and 3) produce similar, more realistic lithofacies probability functions. The range of resistivities where clay and sand overlap differs between methods 2 and 3: ranging between 100 and 200 ohm-m for method 2, and between 30 and 50 ohm-m for the method 3. These differences affect the posterior lithology distributions in multiple point geostatistical (MPS) simulations, and in turn, predictions of flow from models which integrate these results. To test the models, we can compare measured breakthrough times of recharged water at the site to groundwater flow simulation results using the lithofacies models created by each method. The methods described here can inform the integration of non-collocated geophysical data into a variety of applications.
机译:含水层补给和回收(ARR)是通过构造工程运输工具来增强天然地下水资源并回收水以供以后使用的过程。对ARR站点岩性非均质性的了解不足,常常会阻碍人们预测地下渗入水的位置和速度,这可能会对ARR站点可用水的质量和数量产生不利影响。在这项研究中,我们探索了使用电阻层析成像(ERT)来帮助表征ARR站点的岩性非均质性,以便将其整合到流动和污染物运移模型中。在这种情况下,我们从完整的ARR盆地获得了非共置的井芯测井数据和ERT数据。我们比较了三种产生条件岩性-电阻率概率分布的独立方法:1)在给定的搜索条件下,将最接近的测井岩性与ERT电阻率面板联系起来的搜索模板; 2)最大似然估计(MLE),以使双峰正态分布与每条ERT线的直方图匹配; 3)限于井数据的基于变异函数的岩性指标模拟。在给定电阻率的情况下,每种方法都利用贝叶斯规则来估计岩性概率。最简单的方法(方法1)会产生错误的条件概率函数,其中沙子在几乎所有电阻率下都占主导地位,部分原因是最靠近ERT线的井中强烈存在沙子。使用MLE和岩性模拟(方法2和3)的方法会产生相似的,更现实的岩相概率函数。在方法2和方法3中,粘土和沙子重叠的电阻率范围有所不同:方法2的电阻率范围在100到200 ohm-m之间,方法3的电阻率范围在30到50 ohm-m之间。这些差异会影响多个岩性的后岩性分布。点地统计(MPS)模拟,然后根据整合这些结果的模型预测流量。为了测试模型,我们可以使用每种方法创建的岩相模型,将现场补给水的实测穿透时间与地下水流模拟结果进行比较。此处描述的方法可以告知将未并置的地球物理数据集成到各种应用程序中的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号